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Preface

Topology forms a branch of geometry emphasizing connectedness
as the most fundamental aspect of a geometrical object. In topol-
ogy, therefore, one ignores virtually all geometrical traits other than
connectedness, such as any form of change in a geometrical object
that stretching or shrinking might cause. Classification in topology
is a crude tool, but one that never fails to determine if a geometri-
cal object is connected or not. If a geometrical object is connected
then we investigate to what degree it is connected. Just as the state
of connectedness characterizes the essence of many phenomena we
encounter in our daily lives, it is often necessary to describe to what
extent a certain object is connected or separated. Thus the terms one
employs in topology are increasingly becoming important and useful
in other branches of mathematics as well as in various fields in the
natural sciences.

There are numerous algebraic topology books and many of them
are excellent; yet we have dared to add another book on this subject.
The single most difficult thing one faces when one begins to learn
a new branch of mathematics is to get a feel for the mathematical
sense of this subject. To somebody who has mastered the subject
this essential common sense should be as familiar as the air around
him. It takes a long time for a beginner to get to this point. The
purpose of this book is to help an aspiring first-time reader acquire
this topological atmosphere in a short period of time.

I believe that the most efficient way to fulfill this purpose is to
investigate simple but meaningful examples in some concrete terms.
It is important that the reader grasp a mathematical object with his
or her own hands. By touching it one can feel its physical quality
and then keep this as one’s own. This book is a simple manual that
the reader can follow, and in fact the reader who follows our instruc-
tions step by step will end up with a real working model of algebraic
topology.

X1



xii PREFACE

In order to pursue this objective we have therefore sacrificed gen-
erality and limited the objects of our discussion to the simplest but
most essential cases. We did not try to expand the theory to its fullest
extent to make our book an encyclopedic reference; instead, we use
the easiest possible examples to help the reader see the backbone of
our discussion.

We will be greatly pleased if the reader enjoys reading our book
while acquiring several essential methods or approaches to discuss
algebraic topology. We must await the reaction of the reader to see
if our plan will succeed. We will appreciate it if the reader gives us
any feedback (criticisms and comments)‘.

The basic framework of the book comes from the seminar notes
“Practical Topology for Physicists” given by Akihiro Tsuchiya and
compiled by Yasuhiko Yamada at the University of Nagoya in 1986.
I am deeply indebted to Mr. Tsuchiya for permitting me to use his
seminar notes as well as for giving me much useful advice throughout
every stage of the writing. My thanks also go to Tadayoshi Mizutani,
Tetsuya Ozawa, Yoshinori Machida, and Shigeo Ichiraku, who not
only read the entire manuscript carefully, finding many mistakes, but
also suggested various ways to improve the final product. Last but
not least, I would like to thank the editors at Iwanami Shoten.

Hajime Sato
Jduly 1996

‘See Preface to the English Translation




Preface to the English Translation

It is a great pleasure to me that the American Mathematical
Society chose to publish my book “Algebraic Topology: An Intuitive
Approach” in their translation series.

Since the publication of the original version of this book in 1996,
several of my friends (including the translator) have complained that
the gap between my claim that no previous knowledge of mathematics
is required. . . and the actual contents of the book is too big. So I have
provided the reader who has no knowledge of sets, topology, groups,
efc. with a basic minimal Lst of definitions and results that may prove
useful, together with readable references. This is in the Appendix at
the end of the book. This does not really change my original view
that the book is readable for anybody who wishes to find out about
algebraic topology. I think that technical terms help both the reader
and the author organize their thoughts, but they will not do much
good unless both the reader and the author have “good vibes” about
the subject. I have also used the book for my topology seminar (for
seniors) and came to see that the reading got a little rough toward
the end of the book. This is all right too, since it simply shows that
good vibes alone cannot conquer everything; however, I have modified
some of those troublesome spots, filling in missing links and so on.

I am grateful to the translator, Kiki Hudson, for conveying my
writing style and philosophy as faithfully as possible in her transla-
tion. We discussed all the changes verbally, and consequently she
had to do more writing than translating. This is especially so with
the Appendix. I would also like to thank Martin Guest for valuable
suggestions, Yoshinori Machida for spotting numerous typos, and the
AMS editors for presenting the book in splendid style.

Hajime Sato
September 1998
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Objectives

As T stated in the Preface, in topology we investigate one aspect of
geometrical objects almost exclusively of the others: that is, whether
a given geometrical object is connected or not connected. We classify
objects according to the nature of their connectedness. One focuses on
the connectivity, ignoring changes caused by stretching or shrinking.

One can measure the length of a geometrical object in meters
and the weight in kilograms. How do we measure the extent to which
a geometrical object is connected ? Can we develop a system with
suitable units and numbered scales?

For example, we can use the number of holes in a geometrical
object. But then what is a hole and how do we count the number of
holes? In this book, you will find a mathematical interpretation of
these concepts, termed “homotopy groups”, “homology groups”, and
“cohomology groups”. These are some of the major concerns in alge-
braic topology. We actually go beyond counting the number of holes
and develop “characteristic classes” to describe how a geometrical ob-
ject bends globally. Intuitively the “i-th homotopy group” describes
the “i-dimensional round holes” and “i-th homology group” reveals
the number of “i-dimensional rooms” in a geometrical object.

In the problem described above, which may appear to be too slip-
pery to grasp, it would be nice if the reader would come to understand
and appreciate how contemporary mathematics has constructed the
theory of algebraic topology, translating geometrical concepts into al-
gebraic terms. It has managed to express these problems cleanly and
algebraically in group-theoretical terms (involving almost only the
additive group of integers or cyclic groups of integers modulo prime
numbers). I want the reader to spend a few minutes before beginning
the book imagining the problem of classifying geometrical objects
only with a yardstick that measures their connectedness. Then after
finishing the book the reader should compare its contents with this
original concept. If the concept and reality are far apart you will have
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opened a door to a brave new world, and if they are rather close your
mathematical intuition will have proved to be excellent (and you will
continue to go on the right track with conviction).

If you already have any familiarity with algebraic topology, you
might rightly guess from the table of contents that the following are
the key words in the book:

homeomorphisms, homotopy equivalences, torus, Mdbius strip, closed
surfaces, Klein bottle, cell complexes, fundamental groups, homotopy
groups, homology groups, cohomology groups, fiber bundles, vector
bundles, spectral sequences, characteristic classes, etc.

If you have seen some (or all) of these words somewhere before
and they have vaguely interested you, then you will find upon finishing
the book that they are not difficult at all but that they form some
of the basic concepts in contemporary mathematics. If you have had
nothing to do with them so far, I hope that the strange sound they
make intrigues you enough to start the book.

Topology has developed (perhaps unintentionally) on the strength
of several attractive geometrical figures which serve as characteristic
examples for the theory. This pattern may not be unique in topology;
we may see it repeated in other branches of mathematics and possibly
in every other academic discipline.

I emphasize again that the purpose of this book is to familiarize
the reader with the way to think about algebraic topology. I use the
axiomatic approach to introduce homology and cohomology theories,
and will later construct concrete examples such as simplicial homology
groups, as I feel that this order might work better to sharpen the
reader’s intuitive understanding.

Needless to  say, algebraic topology evolved from general topology
(the theory of topological spaces). If you have already studied general
topology (especially its geometrical aspects), for instance if you have
read Chapters from I to XIin Topology of James Dugundji?, you will
be ideally prepared; however, I have tried to keep my explanation
basically intuitive so that even readers with no previous knowledge of
general topology will be able to follow the book.

The reader might feel a need for the theory of groups, but es-
sentially all you need in order to read this book is to understand the
following two concepts:

2 Topology by James Dugundji, William C. Brown. 1989
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(1) The addition or subtraction of two integers gives another
integer (we say that the set 7 of the integers is an additive group).

(2) In certain situations, we regard two integers which differ by
a fixed prime number p to be equal (we say that we consider integers
modp). We write Z, for the set of the integers modp. The addition
and subtraction of integers carry over to those operations modp (we
say that modp is a cyclic group of order p),

The only talent this book demands of the reader is a flexible and

resiient  mind.
List o SyMBOLS

Symbol Meaning Page
fo~ hfi homotopic 3
[X,Y] homotopy set 4
X~Y X and Y have the same homotopy type 4
D" n-dimensional ball 9
g1 (n - 1)-dimensional sphere 9
I closed unit interval [0, 1] 10
P (R) n-dimensional real projective plane 11
€' (open) i-cell 13
é closed i-cell 13
(X, 20) n-th homotopy group of X 25
m(X) n-th homotopy group of X 25
hy(X) pth homology group of X 31
h.(X) direct sum Y7 hy(X) of hy(X) 31
pt singleton set 32
Hy(X;G) | hy(X) for hoX) & G 32
H,(X;G) | directsum 3 % of H,(X; G) 32
CA cone over A 36
ﬁ*(X) reduced homology of group X 38
c chain complex 45
Z,(C) group of p-cycles 45
B, (C) group of p-boundaries 45
gl < og" simplex g/ belongs to the boundary of ¢"

(07 is a face of 0" that is different from o™) | 48
Cy(8;Z) g-th chain group of 8 over Z 52
H,(S;Z) g-th homology group of 3 over 7, 53
P™(C) n-dimensional complex projective space 56
hP(X) p-th cohomology group of X 59
s simplicial complex 49
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Symbol Meaning Page
h*(X) direct sum Z _o PP(X) of WP(X) 59
or, b coboundary homomorphism 60
9U8; G g-th cohomology chain of S over G 60
C*(8; @ cochain complex of S over G 61
HY(S; Q) q-th cohomology group of S over G 61
98; 3 group of g-cochains of S over G 61

BY(§; Q) group of g-coboundaries of S over G 61
G, ® Gy tensor product
Hom(G,, G,) | abelian group of homomorphisms from (7

to G 66
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CHAPTER 1

Homeomorphisms and
Homotopy Equivalences

Throughout this book a map means a continuous map.’

In topology we essentially discuss the connectedness of geomet-
rical objects called topological spaces; however, strictly speaking, we
consider topological spaces and two types of continuous maps be-
tween them, which are called “homeomorphisms” and “homotopy
equivalences” respectively. We might classify topological spaces up to
homeomorphism, or we might do so up to homotopy equivalence. Our
choice depends on how strong we want our classification to be. The
classification according to homotopy equivalences is weaker (there are
many spaces not “homeomorphic” to each other that are of the same
“homotopy type”), but it is the one that plays the more important
role in algebraic topology, because geometrical properties of homo-
topy equivalences translate themselves most successfully into modern
algebra.

The classification of the capital letters A, B, C, . . ., Z by homeo-
morphisms results in the following nine classes (this also depends on
the choice of font, and here we use the sans-serif style; for example
we write I and not I).

(AR}, {B},{C,G,1, J.LLM,N, S, U, V. W, 2},
{Dv O}a {Ea F’ T' Y}> {H7 K} {P}7 {Q}’ {X}
The letters in any one of these classes are homeomorphic but no two
belonging to distinct classes are.

On the other hand, homotopy classification breaks the alphabet
into three distinct classes according to their “homotopy types”:

{A,R,D,0,P}, {B,Q},
{C,I,LLM,N,S,U,V,W,Z F J T,Y,G H,K X}

‘See the Appendix for the definition
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Two letters have the same homotopy type if and only if they belong
to the same class.

We count the number of holes in each letter in the set containing
the letter A as one, that of each letter in the set containing B as two,
and that of each letter in the last set as zero. Have the above simple
examples led you to guess the definitions of homeomorphisms and
homotopy equivalences?

1.1. Homeomorphisms

permnztron 1.1, We say that topological spaces X and Y are
homeomorphic if there exist continuous maps f: X — Y and g :
Y — X such that the composites g o f and fog are the identity maps
of X and Y respectively; in short, g o f = id and f o g = id, where
id denotes the identity map. In this case f is a homeomorphism from
X to Y and g is a homeomorphism of Y to X.

The fact that go f is the identity map implies that f is an injection
and g is a surjection. Similarly the fact that f o g is the identity map
implies that f is surjective and g is injective. Altogether it follows
that both f and g are continuous bijective (1-1 onto) maps.

samere proezem 1.2, Consider the letters M and N. Think of
them as topological spaces and construct homeomorphisms f : M — N

M N
M N

FIGURE 1.1

sowvrzon. Let f be a map which sends the left half A of the M
onto the left vertical line plus the center diagonal A of the N without
changing anything, while straightening the right half A of M and
sending it onto the right vertical line I of N (see Figure 1.1). We want
g to transfer the left vertical line and the center diagonal line of N
onto the left half A of M, and to bend the right vertical line of N
and map it onto the right half A of M. Then we get g o f = id and
fog=1id
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SampLE ProBLEM 1.3. Show that the topological spaces X and
I are not homeomorphic.

SoruTIioN. Suppose there existed a homeomorphism f : X — L
For any point g, in X the definiton of a homeomorphism insures that
the map f|(x—z,) which is the restriction of f to the space X minus
the point z; is a homeomorphism of X = zg onto I = f(xy). Take, in
particular, the crossing point of X as z¢. Then X =z consists of four
digoint line segments (each being half open, having one open end and
one closed end), and I — f(z)consists of two disjoint line segments
(each of which is half open). These two spaces are not homeomorphic.

The basic stance of topology is to regard all spaces homeomorphic
to each other as identical.

1.2. Homotopy equivalences

In order to define homotopy equivalences we must first say when
two maps are homotopic.

DErFINITION 1.4. Two maps from atopological space X to a topo-
logical space Y,
fi:X—)Y (i:o}l),
are homotopic if there exists a family of continuous maps
ft:X—)Y (tE[O,lj),

varying continuously from fyto fi. We indicate this situation by
fo ~ fiand say that f, (¢ €/0, 1]) is a homotopy between them.

ExampLE 1.5. We consider two maps f; and f, from the letter
X to the letter Y: fy sends every point of X to the crossing point of
Y, and f; maps the upper vee v of X onto the upper vee v of Y and
the lower wedge A of X onto the lower vertical 1 of Y by closing A
like a tweezer. Then fp and f; are homotopic because we can define
fi, t€l0, 1], to be the map sending each point z of X to the point
obtained by shrinking f) (x)by t from the center crossing of Y.

exawvee 1.6. Take the letter 0. Let f, be the map of 0 into
itself which sends every point to the apex of the 0 and let fi be the
identity map. Then f; and fi are not homotopic.

This fact is intuitively obvious (we can never change the identity
map of 0 to a constant map through continuous maps: we cannot
shrink the letter O to a point without breaking it). A precise proof,
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however, depends on homology theory, and we will see it in Example
4.9.

Suppose we look at the set S of the maps from a topological
space X to a topological space Y. The following properties are easy
to check.

1. Amap f:X — Y is homotopic to itself.

2. If fis homotopic to g : X — Y then g is homotopic to f.

3. If f is homotopic to g and g is homotopic to 4 : X — Y then
f is homotopic to 4.

Therefore the relation of being homotopic is an equivalence re-
lation on S that breaks S into equivalence classes called homotopy
classes . We denote by

[X,Y]
the set of the homotopy classes of maps from X to Y, which we call
the homotopy set of X to Y. In other words, we regard all homotopic
maps from X to Y as identical and place them in the same homotopy
class. Therefore, even if a homotopy class has a large number of
maps, we need to look at only one of them. This is an algebraic
simplification.

Exameie 1.7. Consider the letters X, Y and 0. We will discuss
the following result in Chapter Three:

[X, Y] = one point, [0, O] = Z (the set of the integers).

permnimion 1.8, Let X and Y be topological spaces. A map
f:X =Y is a homotopy equivalence of X and Y if for some map
g:Y =X the composites go f:X - Xand fog:Y — Y are
homotopic to the identity map of X and Y respectively.

We say that X and Y have the same homotopy type if there exists
ahomotopy equivalence between them.

In general a homotopy equivalence is neither injective nor surjec-
tive. We write X ~ Y when X and Y have the same homotopy type.
We are using the same symbol for homotopic maps, but this should
not cause any confusion here since both sides are topological spaces.

Proszmv. Show that the map f; : X — Y from the letter X to
the letter Y in Example 1.5 is a homotopy equivalence (Hint: for a
suitable g : Y — X construct a homotopy between g o fy and the
identity map as well as a homotopy between f; o g and the identity
map).
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From the definition we see that two topological spaces that are
homeomorphic have the same homotopy type; therefore, homotopy
equivalences are a looser (less strict) way of classifying topological
spaces.

We have so far used only letters of the alphabet. These are
one-dimensional geometrical objects (topological spaces) consisting
of lines and curves; however, the definitions of homeomorphisms and
homotopy equivalences carry over to geometrical objects of dimen-
sions two or higher, including of course three-dimensional spaces.

exaere 1.9. A doughnut is homeomorphic to a coffee cup with
a handle, and has the same homotopy type as the letter 0.

In later chapters we will study homology groups and cohomology
groups (of topological spaces). They each offer the identical informa-
tion for spaces of the same homotopy type. We will introduce other
tools such as characteristic classes to determine if the given spaces
are homeomorphic.

1.3. Topological pairs

In topology we frequently consider a pair of topological spaces
(X, A) rather than a single space X. Passing from single spaces to
pairs of spaces as objects of study was a great breakthrough in alge-
braic topology in the past.

By a topological pair (X, A) we mean a topological space X and
a subspace A of X.

Given two pairs (X, A) and (Y, B), by a map of pairs f : (X, A) —
(Y, B) we mean amap f:X — Y such that

f(A) c B.

The concept of homeomorphisms for topological pairs parallels
the case for single spaces; namely, two pairs (X, A) and (Y, B) are
homeomorphic if we can find maps f: X - Yand g: Y — X such
that the composites go f : X — X and fog : Y — Y are the identity
maps of X and Y respectively. The restrictions f [4: A — B and
gl : B — A are both homeomorphisms.

exaeiz  1.10. In the (x,y,z)-space R®, splice the ends of a
string to make a simple loop A. Make a loop B in R® by tying a
knot in the string before splicing its ends (see Fig. 1.2).
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Freure 1.2. Knots

We can show that such pairs (R*, 4) and (R?, B) are not homeo-
morphic to each other (later we will compute the “fundamental groups
of the complements of A and B” using “homotopy theory”).

We say that two continuous maps of pairs f, : (X, A) — (Y, B),

i =0, 1, are homotopic if there exists a family of continuous maps of
pairs

ft:(Xa A)""(Yv B)1 tE[O, 11,
varying continuously from fyto f;.

We partition the continuous maps from a pair (X, A) to another
pair (Y, B) into homotopy classes; that is, we look at the set denoted
by

[(X,4),(Y,B)]
in which each element is a homotopy class consising of all homotopic
maps from (X, A) to (Y, B). We say that [(X, A), (Y, B)] is the homo-
topy set of maps from (X, A) to (Y, B). In particular,if A =B = {§
we write X and Y in place of (X, () and (Y. ). Then we have

X, Y] = [(X,0), (Y, 0)).

as the right-hand side of the equality is the homotopy setin which an
element is a set of homotopic maps from X to Y.

We investigate detailed features of homotopy sets in Chapter
Three.

Summary

1.1 A map from one topological space to another is a homeomorphism
if it has an inverse map. Two topological spaces are homeomorphic
if there exists a homeomorphism between them.

1.2 A map from one topological space to another topological space
is a homotopy equivalenceif it has an “inverse map” in the homotopy
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sense. Two topological spaces have the same homotopy type if there
exists a homotopy equivalence between them.

1.3 The same ideas carry over to homeomorphisms, homotopy equiv-
alences and homotopy types for maps of topological pairs.

Exercises

1.1 Show that the letters W and Z are homeomorphic.

1.2 Show that the letters P and R have the same homotopy type.
1.3 The upper portion A of the letter A is a subspace of A and the

upper portion D of R is a subspace of R. Show that the pairs (A, A)
and (R, D) are homeomorphic.




CHAPTER 2

Topological Spaces and Cell Complexes

There is a large selection of geometrical objects around us, rang-
ing from basic ones such as line segments and disks to fuzzy ones
whose boundaries are blurry. We must state precisely which geomet-
rical objects are subjects of our investigation in this book. We must
be able to determine if a geometrical object is connected or sepa-
rated. In other words, we only consider those objects on which we
can impose the concept of continuity, and we will call them topo-
logical spaces. There is a wide variety of topological spaces, among
which the most basic are (solid) balls, also referred to as disks or cells.
The boundary surface of a ball is a sphere. The dimensions of cells
we study do not stop after one, two and three, but run up to n in
general. We construct a topological space called a cell complex by
splicing together finitely many cells of suitable dimensions. In this
chapter we explain how to build various topological spaces and cell
complexes. In the ensuing chapters we will deal with cell complexes
only, unless otherwise stated.

2.1. Basic spaces

For anatural numbern > 1, we define the n-dimensional ball (or
n-ball) D™ by

Dn = { (1‘1,12,.. . 7xn) € R2| ZZE? S 1 } y
and the (n = 1)-dimensional sphere (or (n  1)-sphere) by
st = { (z1,Z2,...,%,) € R lez =1 } ]

The O-sphere S° consists of two points {+1}. We make the convention
that the O-disk DU is a one-point space. The boundary 4D" of the




